
International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 271

ON THE RANDOMIZED PROCESS OF TIMESLOT ALLOCATION IN

5IRECHAIN NETWORK

VILMA MATTILA, PRATEEK DWIVEDI, PRATIK GAURI &

 DHANRAJ DADHICH
5ire (Sustainable Distributed Computing)

Unit Number 101, IFZA Dubai - Building A2, Dubai Silicon Oasis,

United Arab Emirates

https://doi.org/10.37602/IJSSMR.2022.5322

ABSTRACT

In this paper, we study the slot allocation algorithm of 5irechain. This algorithm distributes

timeslots to block assemblers. The block as- sembler that receives a certain timeslot gets the

opportunity to produce a block in that timeslot. The slot allocation algorithm allocates slots to

block assemblers depending upon their weights. That is the block assem- bler with higher

weight gets to assemble more blocks than others and thus earns higher incentives.

1.0 INTRODUCTION

Like every cryptocurrency network, 5irechain also requires transactions to be in- cluded into

valid blocks and accepted across the network in order to be confirmed. Block production is

the most crucial thing for any cryptocurrency network as the stability and consistency of the

network depends on it. If the issues related to block production is not properly addressed, it

will leave the network in an inconsistent state, and could enable double-spending of tokens.

In 5irechain, a block is produced in every 3 seconds unless there is lack of available

transactions to construct a block. These blocks are produced by block assemblers who are

selected on the basis of their weights that are calculated from multiple pa- rameters.

Prospective assemblers offer to assemble blocks in an epoch lasting 48 hours. Then a group

of around 50 assembler are chosen depending upon their total weights. The top 50 nodes in

terms of total weight are chosen for block assembly. Then these assemblers are allocated

timeslots, each of which last 3 seconds. Since, an epoch lasts 48 hours there can be at least 48

1200 or 57600 time slots to be distributed among assemblers. If there are parallel chains, this

number will be much higher. The slot allocation algorithm of 5irechain randomly distributes

timeslots to assemblers. The algorithm takes a seed to randomize the process of slot

allocation, and this random seed is extracted from the 5irechain itself. The slot allocation

algorithm ensures that each block assembler will get to assemble a number of blocks in

proportion to her own weight. So, a node with a high value of weight will get to assemble a

higher number of blocks. So, the nodes will earn more incentives than others with lower

weights. The algorithm is decentralized in nature, meaning that all the nodes running the

algorithm on similar inputs will produce identical outputs. This will ensure that there will be

a general consistency among nodes that are not cut-off from the network.

http://www.ijssmr.org/
https://doi.org/10.37602/IJSSMR.2022.5322

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 272

2.0 SLOT ALLOCATION METHOD

In this section, we describe how slots are allocated to block assemblers in 5irechain. In the

5ire ecosystem, one epoch lasts for 48 hours. Each epoch is divided into slots of length 3

seconds each. The 5ire ecosystem distributes slots to the assem- blers in a decentralized way.

The number of slots in the 5irechain will depend upon the number of nested chains. In each

nested chain there will be one slot in parallel to each other. Our scheduling algorithm

allocates s slots to all block assemblers across different chains while ensuring that each of the

assemblers gets a number of slots in proportion to her total weight. Here, s is the number of

slots to be distributed to assemblers. Obviously s is the number of parallel chains in the

network. So, there are s time slots to be distributed among n assemblers. Our slot allocation

algorithm distributes all the s slots to s block assemblers. The slot allocation algorithm is

executed between time tk and tk+1, and it distributes s many time slots of time tk+1. Let

there be n ≥ s block assemblers identified as

P1, P2, . . . , Pn. The total weight of Pi is wi, for i [1, n]. The total weights are calculated

from multiple factors associated with 5irechain’s consensus protocol. The slot allocation

algorithm distributes slots in a way so that the assembler wi Pi gets approximately n j=1wi wj

× 100% of the total slots in a particular epoch. Let us define αi = n j=1 wj . The slot

allocation algorithm maintains a variable Ui to store the dynamic number of blocks that have

so far been allocated to assembler Pi. Ui is continuously updated as more slots are allocated

to Pi. The slot allocation algorithm takes as input a random number β which is extracted from

the blockchain itself.

There are two random functions in Algorithm 1. The first function rand1 () takes two

integers l , and l . It samples a random r ←−$ [l , l], and returns it.

The other function rand() takes as input a seed β , and two fractional numbers µ1, µ2 ∈ [0, 1],

such that µ1 < µ2, and return a random fractional number ν satisfying µ1 ν µ2. The two

random functions are deterministic in nature. This ensures that they output the same values in

all the nodes. The seed β is a number extracted from the 5irechain itself. It is the hash of all

the blocks across all parallel chains that occurred exactly hundred time slots back in the

5ire ecosystem. If there were multiple chains then the blocks occurring on all the chains

exactly hundred slots back need to be considered as shown in Figure 1. The use of the

random seed β ensures that the slot allocation schedule cannot be predicted too early. The

algorithm first calculates the fraction of slots allocated to each assembler. This is denoted by

ai in Algorithm 1. Then the algorithm calculates the difference bi between αi and ai. If the

difference, is negative then it means that the assembler i has so far been allocated more slots

than what she deserves depending upon her weight. So, the algorithm does not allocate slots

to that assembler in the current time slot. Instead, all the assemblers for whom the

Require: αi, Ui : i ∈ [1, n], slot no. =s, β

Ensure: Γ, Ui

http://www.ijssmr.org/

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 273

→

Σ

for i = 1 n do

Ui

ai = n

j=1 Uj

bi = αi − ai

if bi < 0 then

bi = 0

end if

end for

Γ = ∅, ζ = ∅, t = 1

while |ζ| < s do

c = 0

L = 0

B = D = ∅

for k = 1 → n do if k
∈ ζ then

continue

else

c = c + bk L

= L + 1 B[L]

= k

D[L] = c

end if

end for

if c = 0 then

z = rand1(1, L) Γ

[t] = B[z]

Uz = Uz + 1

else

m = rand(β, 0, c)

for i = 1 → L do

if m < D[i] then

Γ [t] = B[i]

ζ = ζ ∪ {B[i]}

http://www.ijssmr.org/

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 274

∈

∈

{ ∈ \ }

Σ

Ui = Ui + 1

end if

end for

end if

t = t + 1

end while

difference is positive are chosen. If the difference is not positive for any of the assemblers,

then the slots are randomly allocated to the block assemblers. For example, when the fraction

of allocated slots are same as the fraction of weights,

i.e. when ai = αi, for all i [1, n], then the slots will be randomly distributed to the

assemblers, with the condition that an assembler must not get more than one concurrent

slots across multiple shards. So, in a particular time, a block assembler does not get to

assemble more than one slot if there multiple chains existing. If the difference bi = αi

− ai is higher than zero for some assemblers, then the algorithm randomly distributes

the slots on the basis of bi’s for all i [1, n], such that bi > 0. The algorithm

stores the set of assemblers that have been allocated slots in the dynamic variable ζ. At

any point during the execution of the algorithm, there are s − |ζ| slots to be allocated to s

− |ζ| assemblers. Assume that Ψ = i : bi > 0, i [1, n] ζ . That is, Ψ is the set of

indices of assemblers that have not been allocated any block in the next slot, and for

whom bi is positive. Our algorithm allocates a time to a an assembler in Ψ with

probability as follows:

Hence, i∈Ψ pi = 1. Hence, the |ζ |+1’th slot is assigned to one of the assemblers in Ψ

with probability 1. This way all the s slots in time tk+1 is allocated to s out of n

assemblers.

http://www.ijssmr.org/

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 275

Fig. 1. Extracting randomness from the 5irechain

2.1 Extracting randomness from 5irechain

The slot allocation algorithm of 5irechain distributes time slots to block assem- blers

randomly while ensuring that the number of slots received by an assembler is in proportion to

her total weight. At the same time, we have to ensure that the slot allocation cannot be

predicted too early. For that reason, we need to incorporate a randomness into the slot

allocation process such that it is hard to predict the randomness before it is actually

generated. We observe that the 5irechain network itself can be used to produce the

randomness. The blocks in 5irechain network can be treated as a source of randomness. In

our slot allo- cation algorithm, we use a randomness called β to randomly distribute slots.

While distributing the slots for a particular time, we extract randomness from the blocks that

occurred on the 5irechain exactly 100 positions back. The process is depicted in Figure 1. In

this figure, the most recent blocks are C0, C1, C2, and C3. Obviously, there are four parallel

chains or shards. We need to distribute next four slots across four parallel chains. While

distributing the four slots, we extract a randomness β from the blocks that occurred 100

positions back. As can be observed in the figure, there were five blocks across five shards

that oc- curred in the network 100 positions back. They are denoted in the figure as B0, B1,

B2 and B3. So, we computes β as the hash of those blocks, that is, β = Hash(B0, B1,

B2, B3). Thus the randomness β needs to be calculated from all the blocks across all the

parallel chains that existed exactly 100 positions back even when some of them are

terminated later or when new chains are created from older chains. In Figure 1, it can be

observed that two chains are merging into one, whereas one chain is getting split into two.

Thus, creation of newer chains or deletion of older chains does not have any impact on the

way β is com- puted. The value of β only depends on the blocks that occurred 100 positions

back. Since, in 5irechain, the duration of a slot is 3 sec, β cannot be computed more than 300

seconds ago. Note that in case of multiple parallel chains, not all chains must necessarily

have the hundredth block at the same time slot. This is due to the fact that one block in a

particular time slot on a particular chain might be missing. It is quite possible than a block in

a particular time slot does get assembled or attested.

Theorem 1. Our 5irechain slot allocation algorithm allocates blocks to assem- blers in

proportion to their weights.

http://www.ijssmr.org/

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 276

3.0 CONCLUSION

In this paper, we study the slot allocation algorithm of 5irechain. The algorithm allocates

timeslots to block assemblers randomly in a completely decentralized fashion. Every block

assembler gets a number of slots in proportion to her own weight as calculated before the

commencement of an epoch. The algorithm makes use of two random number generators that

take as input a random seed generated from the 5irechain itself.

REFERENCES

Zheng Z, Xie S, Dai H, Chen X, Wang H, An overview of blockchain technology:

architecture, consensus, and future trends. In: Proceedings of the 2017 IEEE

international congress on big data (BigData congress). IEEE, pp 557–564, 2017.

Matching with indifferences: A comparison of algorithms in the context of course allocation

European Journal of Operational Research, 2017.

C. C. Han, K. J. Lin, and C. J. Hou. Distance-constrained scheduling and its applications to

real-time systems. IEEE Trans. on Computers, 45(7):814-826, 1996.

D. Puthal, S. P. Mohanty, P. Nanda, E. Kougianos and G. Das, "Proof-of-authentication for

scalable blockchain in resource-constrained distributed systems", Proc. IEEE Int.

Conf. Consum. Electron, 2019.

Q. Wang, B. Ye, T. Xu and S. Lu, "An approximate truthfulness motivated spectrum auction

for dynamic spectrum access", Proc. IEEE Wirel. Commun. Netw. Conf., pp. 257-

262, 2011.

R. Carr and S. Vempala, "Randomized metarounding", Random Struct. Alogrithm, vol. 20,

no. 3, pp. 343-352, 2002.

S.-H. Wie and D.-H. Cho, "Time slot allocation scheme based on a region division in

CDMA/TDD systems", IEEE Veh. Technol. Conf., vol. 4, pp. 2445-2449, 2001.

http://www.ijssmr.org/

International Journal of Social Sciences and Management Review

Volume: 05, Issue: 03 “ May - June 2022”

ISSN 2582-0176

www.ijssmr.org Copyright © IJSSMR 2022, All right reserved Page 277

H. Chung, M. Kim, N. Kim and S. Yun, "Time slot allocation based on region and time

partitioning for dynamic TDD-OFDM systems", Proc. IEEE Veh. Technol. Conf.,

2006.

http://www.ijssmr.org/

