Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

DYNAMIC LINKAGES AMONG GOVERNMENT BONDS YIELD (SBN-DOMESTIC), MARKET INDEX (IHSG), US TREASURY BOND YIELD, SP500 AND EXCHANGE RATE (IDR/USD)- EFFECT OF PANDEMIC-COVID19 BY VECTOR ERROR CORRECTION MODEL (VECM) APPROACH: EVIDENCE FROM INDONESIA

MARTONO TAMPUBOLON

Faculty of Economics and Business, Universitas Indonesia, Kampus UI Depok 16424, Jawa Barat, Indonesia

https://doi.org/10.37602/IJSSMR.2022.6110

ABSTRACT

This study empirically examines the dynamic linkages among yield SBN-Domestic and IDX-Composite to the shocks of US Treasury bonds, SP500, and IDR/USD. Analysis applying VECM. IRF, VD, and Granger causality. testing proved that in the long run, during the pandemic-covid19 period, the SBN-Domestic experienced a significant change to all shocks, but the biggest changes were on SBN3Y and SBN5Y. This was due to the fact that during the Covid-19 pandemic, SBN3Y and SBN5Y were considered high risk. IDX-Composite was significantly changed for SP500 during the pandemic-covid19 period. The variance decomposition test proved that in the long run, SP500 has the highest variance contribution.

Keywords: Dynamic linkages, SBN-Domestics, IDX-Composite, VECM, Shock

1.0 INTRODUCTION

Financial market integration has become a very important thing to know, especially when there are economic, trade, and investment relations between countries. Eiteman et al (2010) said that market integration is a condition where stock prices in various capital markets in the world have a very close relationship (closely correlated) with every capital market in the world. Another definition of market integration is described by Click & Plummer (2005), which says that from the point of view of investors who have portfolios, market integration shows that two different markets have the same direction of movement and are correlated. Financial market integration at one time will lead to smaller portfolio diversification opportunities. The co-movement between financial markets to the shocks will lead to contagion and ultimately higher levels of correlation, thereby reducing opportunities for diversification (Hyde, Bredin, & Nguyen, 2010). In line with the statement above, a literature study from Panda & Nanda (2016) says that if the returns from two or more stock markets in several different countries are not correlated and stable, then it will provide potential profits from diversification, or in other words, if the correlation co-movement between stock markets is low, it will provide benefits for investors who diversify between global stock markets. This reduced opportunity for diversification is due to the high correlation so that when shocks occur in a country's financial markets, they will be transmitted (contagious) quickly to financial markets in other countries in the world that are integrated with each other. The latest

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

empirical study from Caporale, Gil-Alana, & You (2021) says that financial integration can be divided into two types, namely regional integration and global integration.

There are several empirical studies that analyze the impact of financial shocks on other macroeconomic variables. Greene (2008), Gujarati (2008), and Hamilton (2001) say that response is a concept of a combined impact between various parameters that come directly, indirectly, and dynamically (not instantly). Dynamic linkages occur due to indirect impacts, interdependencies between variables, and between times on shocks of other transmitting variables (Wen et al, 2014). Referring to a research article conducted by Koskita & Laopodis (2019) explains that dynamic linkages in time series data are divided into two types, namely short-run and long-run dynamic linkages obtained by the cointegration test, These dynamic linkages are obtained by constructing a vector autoregressive (VAR) model or vector error correction model (VECM) and Engle's (2002) dynamic condition correlation generalized autoregressive conditional heteroskedasticity (DCC-GARCH) specification. Nautuyal & Kavidayal (2018) in their research used the VECM model to explain dynamic alliance linkages between stock markets in the US, UK, Japan, Germany, India, China, Malaysia, and Korea. Panda & Nanda (2016) in their research used the VECM model with the analysis methods of cointegration test, variance decomposition test, and granger causality to test dynamic linkages between stock markets in South America and Central America. Mohanasundaram & Karthikeyan (2015) tested the cointegration and interdependence of stock markets in African countries, India against the US using the VAR model. Chen et al (2020) conducted research on dynamic linkages in the bitcoin market during the Covid-19 pandemic by using the VAR model to determine bitcoin's dynamic interdependencies, this analysis was carried out by cointegration tests. Aimprasittichai et al (2015) in their research concluded that the shock that occurred in the American stock market would quickly be transmitted to other countries stock markets in an easily recognizable way, but there were no foreign stock markets that could significantly affect the movement and behavior of the American stock market. This situation proves that there is a dominance of the American stock market over the stock markets of other countries in the world.

Related to the findings above, other empirical findings were obtained from Caporale, Gil-Alana, & You (2019) who found that there was cointegration between ASEAN 5 and the United States, but there were almost no linkages between ASEAN 5 and China, but there is a relationship between Indonesia and China. These empirical findings are in line with the empirical findings by Vo & Tran (2020) which say that the volatility that occurs in the US capital market will be responded to significantly by the ASEAN capital market, in his research proving that there is cointegration in the ASEAN equity market and the existence of external market effects. such as the United States (US) and China towards the ASEAN equity market. Paucar (2020). In his research, he concluded that by using the VAR model, it was proven that the US markets significantly influenced the Columbian Stock Market. The dynamic linkages between regional and global economic and financial systems on bond yields have been studied by Bredin, Hyde, & Reilly (2010) who said that bond yields (bond returns) are largely determined by domestic monetary policy (inflation expectations). the study was conducted using samples from the UK, US, and Germany. Contrasts with the findings of research conducted by Dhingra & Patel (2021), which examines Financial Linkages and Interdependences in BRICS countries using the Government 10-year bond yield variable and the results of the research reveal that based on the results of the Johansen

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

cointegration analysis test there is a long-term relationship between BRICS countries while the short-run relationship is not significant. These findings are in line with empirical findings in research conducted by Bianconi, Yoshino, & Sousa (2012) who conducted research on the Behavior of stocks and bonds in BRIC countries against US Financial Stress in the period January 2003 - July 2010. The results of the study revealed that in the long run deviations that occur in the BRIC stock market and government bonds are more influenced by US financial stress than deviations originating from BRIC countries. The correlation between stock and bond returns with US financial stress in Brazil and Russia is negative and significant. Much earlier Wang (2013) had examined dynamic linkages in the stock market in East Asian countries during the 2007-2009 global financial crisis using the VAR model approach, the results of the study said that during the global financial crisis period, The financial markets in East Asia have very strong dynamic linkages, the South Korea and Japan capital markets have strong linkages to shocks originating from the US, whereas in the period after the global financial crisis, all countries in East Asia have low linkages to shocks that occurred in the United States. In this study, to examine the dynamic linkages between variables during the research period, the authors adopted the empirical method developed by Koskita and Laopodis (2019), Laopodis (2012), and Laopodis (2010). VECM model would be analyzed by using explaining of impulse response functions (IRF), variance decomposition (VD and Granger causality.

Based on the results of the several studies described above, what has caught the attention of Indonesia is the lack of research examining the existence of dynamic linkages between the yields of domestic government bonds (SBN), not only on the 10-year tenor but on various tenors. (SBN20Y, SBN15Y, SBN10Y, SBN5Y, SBN3Y) and IDX Composite (IHSG)during the pre-pandemic-covid19 and during the pandemic-covid19 shocks that occurred in the US as the world's largest economic power, which was reflected in changes in yieldsUS government benchmark bond (T-Bond10Y), exchange rate (IDR/USD) and SP500 index price.

2.0 HYPOTHESES DEVELOPMENT

- **H1:** There is a change in the dynamic linkages between SBN-Domestics yields (SBN20Y, SBN15Y, SBN10Y, SBN5Y, and SBN3Y) and the IHSG with treasury bond yields (T-Bond10Y) in the period before the covid19 pandemic and during the covid19 pandemic.
- **H2:** There is a change in the dynamic linkages betweenSBN-Domestics yields (SBN20Y, SBN15Y, SBN10Y, SBN5Y, and SBN3Y) and the IHSG with the SP 500 index in the period before the Covid-19 pandemic and during the Covid-19 pandemic.
- H3: There is a change in the dynamic linkages betweenSBN-Domestics yields (SBN20Y, SBN15Y, SBN10Y, SBN5Y, and SBN3Y) and the IHSG at the IDR/USD exchange rate before the pandemic-covid19 and during the pandemic-covid19.

3.0 RESEARCH DESIGN

3.1 Sample and Data

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

This research was conducted in Indonesia. Indonesia is one of the countries that are members of the G20 countries and is one of the representative countries for developing countries (emerging markets) in the world. As one of the emerging market countries, it is suspected that there is a correlation that creates dynamic linkages between the Indonesian financial market and US financial market. Daily data series yields of government bonds were collected from wolrdgovernmentbonds.com, while the daily series of variables SP500 and Exchange rate IDR/USD were collected from investing.com from January -02-2018 to December -31-2021 (984 observations). Data was divided into two periods, namely: January 2018-Feb 2020 is named become pre pandemic-covid19 period, while Maret-9-2020 -December -31-2022 is named the pandemic-covid-19 period.

3.2 Stasionerity Test

Variabels	t-Statistic (critical values):		1%	ADF-test t-	Prob*
		5%	10%	Statistic	
LNSBN20Y	-3.442299	-2.866703	-2.569580	-2.043357	0.2683
LNSBN15Y	-3.442299	-2.866703	-2.569580	-2.086103	0.2505
LNSBN10Y	-3.442322	-2.866713	-2.569586	-2.238839	0.1929
LNSBN5Y	-3.442299	-2.866703	-2.569586	-1.379612	0.5931
LNSBN3Y	-3.442276	-2.866693	-2.569575	-0.708734	0.8421
LNIHSG	-3.442276	-2.866693	-2.569575	-1.620109	0.4716
LNT-Bond10Y	-3.442276	-2.866693	-2.569575	1.436615	0.9992
LNSP500	-3.442276	-2.866693	-2.569575	-1.851730	0.3553
LNIDR/USD	-3.442299	-2.866703	-2.569580	-2.091646	0.2483

Table1: ADF-test at data level of all variables during the pre- pandemic-covid 19 period

Table 2: ADF-test at first difference all variables during pre- pandemic-covid19 period

Variabel	t-Statistic (cri	tical values):	1%	ADF-test t-	Prob*
	5	5%	10%	Statistic	
LNSBN20Y	-3.442299	-2.866703	-2.569580	-17.46373	0.0000
LNSBN15Y	-3.442299	-2.866703	-2.569580	-16.46376	0.0000
LNSBN10Y	-3.442322	-2.866713	-2.569586	-15.60267	0.0000
LNSBN5Y	-3.442299	-2.866703	-2.569580	-16.71721	0.0000
LNSBN3Y	-3.442299	-2.866703	-2.569580	-22.07856	0.0000
LNIHSG	-3.442299	-2.866703	-2.569580	-22.11580	0.0000
LNT-Bond10Y	-3.442299	-2.866703	-2.569580	-22.93013	0.0000
LNSP500	-3.442299	-2.866703	-2.569580	-22.64972	0.0000
LNIDR/USD	-3.442299	-2.866703	-2.569580	-18.59765	0.0000

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Variabel	t-Statistic (crit	ical value):	1%	ADF-test t-	Prob*
	5	5%	10%	Statistic	
LNSBN20Y	-3.444890	-2.867845	-2.570192	-1.540826	0.5121
LNSBN15Y	-3.444890	-2.867845	-2.570192	-1.046724	0.7375
LNSBN10Y	-3.444890	-2.867845	-2.570192	-1.584811	0.4895
LNSBN5Y	-3.444890	-2.867845	-2.570192	-1.024752	0.7456
LNSBN3Y	-3.444856	-2.867830	-2.570184	-0.925917	0.7797
LNIHSG	-3.444856	-2.867830	-2.570184	-0.924108	0.7803
LNT-Bond10Y	-3.444856	-2.867830	-2.570184	-1.520339	0.5226
LNSP500	-3.444991	-2.867889	-2.570216	-0.712161	0.8411
LNIDR/USD	-3.444890	-2.867845	-2.570192	-2.090425	0.2488

Table 3: ADF-test at data level of all variables during pandemic-covid 19 period

Tabel 4: ADF-test at first difference of all variables during pandemic-covid 19 periods

Variabel	t-Statistic (crit	ical value):	1%	ADF-test t-	Prob*
	5%	1	0%	Statistic	
LNSBN20Y	-3.444890	-2.867845	-2.570192	-16.73743	0.0000
LNSBN15Y	-3.444890	-2.867845	-2.570192	-15.60921	0.0000
LNSBN10Y	-3.444890	-2.867845	-2.570192	-15.24770	0.0000
LNSBN5Y	-3.444890	-2.867845	-2.570192	-17.20479	0.0000
LNSBN3Y	-3.444890	-2.867845	-2.570192	-22.46305	0.0000
LNIHSG	-3.444923	-2.867859	-2.570200	-15.91827	0.0000
LNT-Bond10Y	-3.444991	- 2.867889	-2.570216	-13.95864	0.0000
LNSP500	-3.444991	- 2.867889	-2.570216	-11.44101	0.0000
LNIDR/USD	-3.444890	-2.867845	-2.570192	-17.88680	0.0000

Tables 1, 2, 3 and 4 above gave us the information that data are not stationer at level but stationer by process of differencing (first different) the period prepandemic-covid19 and pandemic-covid19 (ADF t-statistic is bigger than t-statistic and significant at its all critical value), thus we rejected Ho.

3.3 Cointegration Test

Table 5: Cointegration test result in the pre-pandemic-covid19 period

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
ww.ijssmr.org	Copyrigh	nt © IJSSMR 2023, A	ll right reserved	Page 15

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

None *	0.115906	207.7184	197.3709	0.0138
At most 1	0.068009	141.6875	159.5297	0.3056
At most 2	0.057898	103.9358	125.6154	0.4768
At most 3	0.043123	71.96787	95.75366	0.6546
At most 4	0.034115	48.34066	69.81889	0.7080
At most 5	0.026314	29.73591	47.85613	0.7323
At most 6	0.019979	15.44266	29.79707	0.7507
At most 7	0.006913	4.625473	15.49471	0.8472
At most 8	0.001691	0.907053	3.841466	0.3409

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.115906	66.03094	58.43354	0.0076
At most 1	0.068009	37.75166	52.36261	0.6359
At most 2	0.057898	31.96795	46.23142	0.6595
At most 3	0.043123	23.62721	40.07757	0.8459
At most 4	0.034115	18.60475	33.87687	0.8453
At most 5	0.026314	14.29326	27.58434	0.8019
At most 6	0.019979	10.81718	21.13162	0.6655
At most 7	0.006913	3.718420	14.26460	0.8878
At most 8	0.001691	0.907053	3.841466	0.3409

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

*denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Table 6: Cointegration test result in the pandemic-covid19 period

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
NO. OF CE(S)	Eigenvalue	Statistic	Chilcal Value	F100.**
None *	0.188902	244.4461	197.3709	0.0000
At most 1	0.091304	152.1155	159.5297	0.1179
At most 2	0.070560	109.8919	125.6154	0.3019
At most 3	0.050346	77.62242	95.75366	0.4473
At most 4	0.042655	54.84126	69.81889	0.4257
At most 5	0.038827	35.61750	47.85613	0.4158
At most 6	0.031042	18.15336	29.79707	0.5547
At most 7	0.008164	4.247006	15.49471	0.8826
At most 8	0.001432	0.631819	3.841466	0.4267

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

www.ijssmr.org

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.188902	92.33064	58.43354	0.0000
At most 1	0.091304	42.22360	52.36261	0.3655
At most 2	0.070560	32.26944	46.23142	0.6398
At most 3	0.050346	22.78116	40.07757	0.8860
At most 4	0.042655	19.22376	33.87687	0.8081
At most 5	0.038827	17.46414	27.58434	0.5403
At most 6	0.031042	13.90636	21.13162	0.3728
At most 7	0.008164	3.615187	14.26460	0.8976
At most 8	0.001432	0.631819	3.841466	0.4267

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

The information on the cointegration test results above concludes that based on the cointegration rank test (Trace) and maximum eigenvalue values in the period of prepandemic-covid19 and during pandemic-covid19, there was one significant cointegration, respectively, at p-values of 0.01% and 0.00% ($\alpha = 0.05\%$) in the pre -pandemic-covid19, and p-values (0.00%) and (0.00%) ($\alpha = 0.05\%$) during the pandemic-covid19 period, thus we concluded that existence of cointegration in the variables. Therefore, the optimum model used to estimate the changes of dynamic linkages of all variables in the model in the period pre-pandemic-covid19 and during pandemic-covid19 is the Vector Error Correction Model (VECM).

4.0 EMPIRICAL RESULTS AND ANALYSIS

Tables 7 and 8 below will explain the summary statistics result during the period pre pandemic-covid19 and during pandemic-covid-19.

	SBN20Y	SBN15Y	SBN10Y	SBN5Y	SBN3Y	IHSG	T-Bond10Y	SP500	IDR/USD
Mean	2,072	2,050	2,000	1,941	1,908	8,728	0,870	7,958	9,557
Median	2,066	2,050	1.996	1,931	1,907	8,734	0,976	7,951	9,556
Maximum	2,221	2,200	2,181	2,150	2,094	8,808	1,175	8,128	9,631
Minimum	1,921	1,883	1,802	1,710	1,686	8,604	0,151	7,759	9,495
Std.Dev.	0,066	0,074	0,085	0,115	0,110	0,040	0,239	0,067	0,029
Skewness	-0,060	-0,358	-0,296	-0,127	-0,235	-0,273	-0,665	0,424	0,442

 Table 7: Summary statistics result in the pre-pandemic-covid19 period

www.ijssmr.org

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Kurtosis	2,409	2,331	2,439	1,956	1,896	2,254	2,066	3,105	3,373
J-B	8,175	21,591	14,887	25,853	32,341	19,171	59,399	16,393	20,669
Probability	0,017	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Observations	539	539	539	539	539	539	539	539	539

Table 8: Summary statistics result in during pandemic-covid19 period

	SBN20 Y	SBN15Y	SBN10Y	SBN5Y	SBN3Y	IHSG	T- Bond10Y	SP500	IDR/USD
Mean	1,985	1,920	1,895	1,737	1,649	8,644	0,057	8,227	9,579
Median	1,978	1,863	1,872	1,709	1,619	8,699	0,147	8,252	9,573
Maximum	2,165	2,162	2,132	2,033	1,595	8,813	0,556	8,473	9,716
Minimum	1,870	1,814	1,777	1,613	1,465	8,278	-0,670	7,705	9,537
Std.Dev.	0,054	0,093	0,077	0.114	0,127	0.121	0,362	0,171	0,031
Skewness	0,805	0,7682	1,150	1,163	0,896	-0,607	-0,261	-0,584	2,183
Kurtosis	3,644	2,171	3,675	3,334	2,867	2,258	1,523	2,516	8,932
J-B	55,714	56,546	106,623	102,39 3	59,864	37,520	45,504	29,623	1005,999
Probability	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Observations	445	445	445	445	445	445	445	445	445

Table 9: Correlation matrix in the pre pandemic-covid19 period

	LNSBN20Y	LNSBN15Y	LNSBN10Y	LNSBN5Y	LNSBN3Y	LNIHSG	LNTBond10Y	LNSP.
LNSBN20Y	1							
LNSBN15Y	0,986641	1						
LNSBN10Y	0,991797	0,987272	1					
LNSBN5Y	0,967839	0,96323	0,980419	1				
LNSBN3Y	0,955202	0,952666	0,966803	0,987356	1			
LNIHSG	-0,37626	-0,367	-0,37735	-0,38259	-0,34934	1		
LNTBond10Y	0,362378	0,303874	0,368309	0,471051	0,466455	-0,12352	1	
LNSP500	-0,24813	-0,20852	-0,27232	-0,36218	-0,38166	-0,04067	-0,73618	
LNIDRUSD	0,908857	0,876821	0,904027	0,88383	0,86792	-0,58332	0,33042	-0,20:

Table 10: Correlation matrix during pandemic-covid19 period

	LNSBN20Y	LNSBN15Y	LNSBN10Y	LNSBN5Y	LNSBN3Y	LNIHSG	LNTBOND10Y	LN
LNSBN20Y	1							
LNSBN15Y	0,885691	1						
LNSBN10Y	0,97122	0,919629	1					
LNSBN5Y	0,926787	0,886818	0,960192	1				
LNSBN3Y	0,838294	0,841801	0,881102	0,956528	1			
LNIHSG	-0,82134	-0,96198	-0,86715	-0,84482	-0,79913	1		
LNTBOND10Y	-0,54206	-0,83489	-0,62372	-0,60393	-0,61757	0,841511	1	
LNSP500	-0,76969	-0,92204	-0,83446	-0,85138	-0,85343	0,924231	0,828646	
LNIDRUSD	0,792076	0,705853	0,788364	0,683498	0,553902	-0,67991	-0,43163	_

Tables 9 and 10 above showed the changing correlation between variables in both periods, but the significant correlation has changed in the period pandemic-covid19 especially the correlation SBN-Domestics and IHSG to the SP500 and T-Bond10Y. T-Bond10Y has a

www.ijssmr.org

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

negative correlation to all SBN-Domestic and a positive correlation to the IHSG during the pandemic covid19 period while has a positive correlation to all SBN-Domestic and a negative correlation to the IHSG in the pre-pandemic-covid19 period. SP 500 has a negative correlation to all SBN-Domestic and IHSG in the pre-pandemic-covid19 and during the pandemic-covid19 period (except USD/IDR) and the correlations were significantly encreased during the pandemic-covid19 period. USD/IDR has dominated in the period pre-pandemic-covid-19, in other words, we find that the variable USD/IDR does not show a significant changing during the pandemic-covid-19 period.

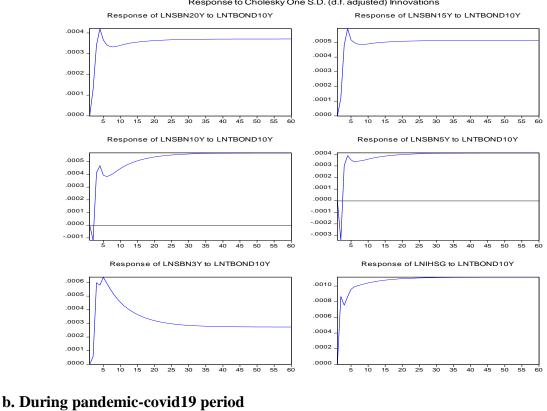
Lag	LogL	LR	FPE	AIC	SC	HQ
0	10765.57	NA	3.00e-29	-40.13646	-40.06453	-40.10832
1	17629.40	13471.54	3.06e-40	-65.44552	-64.72617*	-65.16409
2	17795.44	320.3086*	2.23e-40*	-65.76283*	-64.39607	-65.22812*
3	17848.56	100.6915	2.47e-40	-65.65881	-63.64462	-64.87081

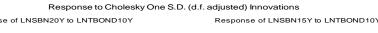
Table 12: Lag-length criteria selection results during pandemic-covid 19 periods

Lag	LogL LR		FPE AIC		SC	НQ
0	7564.143	NA	1.15e-26	-34.18617	-34.10286	-34.15331
1	13010.52	10646.32	3.29e-37	-58.46390	-57.63083	-58.13532
2	13291.57	537.9417	1.33e-37	-59.36912	-57.78628*	-58.74480*
3	13415.59	232.3120*	1.10e-37*	-59.56374*	-57.23114	-58.64370

* Indicates the lag order selected by the criterion

The optimum lag chosen based on the Akaike Information Criterion (AIC) is lag-2 during the period pre pandemic-covid19 and lag-3 during the pandemic-covid-19 period.


4.1 Impluse Response Fuction (IRF) by VECM in the pre-pandemic-covid19 and duringpandemic-covid19 period

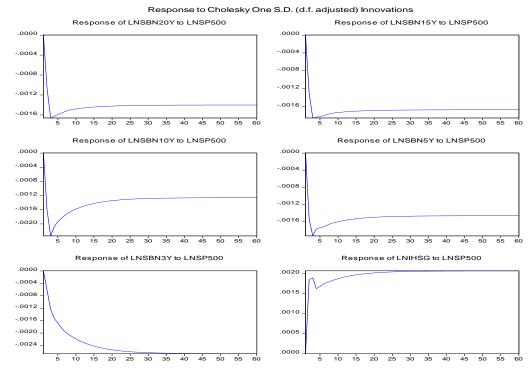

4.1.1 Impulse Response Functions (IRF)SBN-Domestic (SBN20Y,SBN15YSBN10Y, SBN5Y and SBN3Y) and IHSG to the shocks from T-Bond10Y in the pre- pandemic-covid19 and during pandemic-covid19 period

a. In the pre- pandemic-covid19

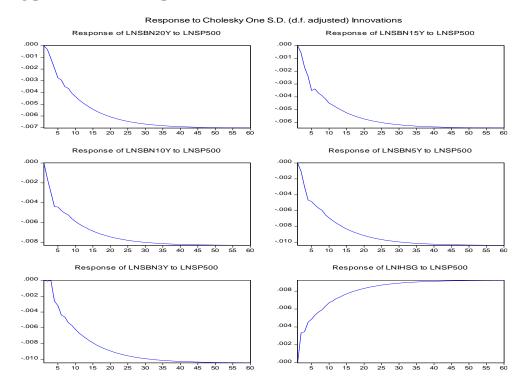
Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Response to Cholesky One S.D. (d.f. adjusted) Innovations Response of LNSBN20Y to LNTBOND10Y Response of LNSBN15Y to LNTBOND10Y .0028 .0030 .0025 .0020 .0020 .0016 .0015 .0012 .0010 .0008 .0005 .0004 .0000 .0000 20 25 30 35 40 45 50 20 25 30 35 40 45 50 55 15 Response of LNSBN10Y to LNTBOND10Y Response of LNSBN5Y to LNTBOND10Y .0025 .003 .0020 .0015 .002 .0010 .001 .0005 .00 15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55 Response of LNSBN3Y to LNTBOND10Y Response of LNIHSG to LNTBOND10Y .0000 .004 -.0005 -.0010 .003 -.0015 .002 -.0020 .00 -.0025 .000 -.0030 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55


4.1.2 Impulse Response Functions (IRF) SBN-Domestic (SBN20Y,SBN15YSBN10Y, SBN5Y and SBN3Y) and IHSG to the shocks fromSP500 in the pre- pandemic-covid19 and during pandemic-covid19 period

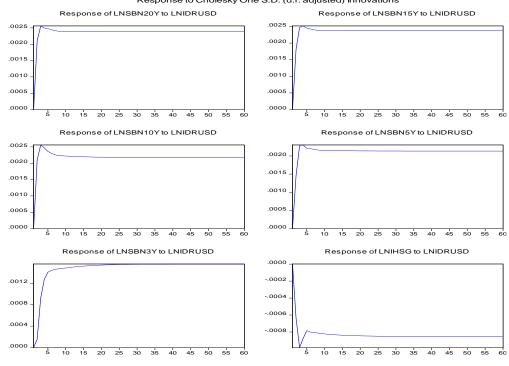
a. In the pre- pandemic-covid19


```
www.ijssmr.org
```

Volume: 06, Issue: 01 January - February 2023

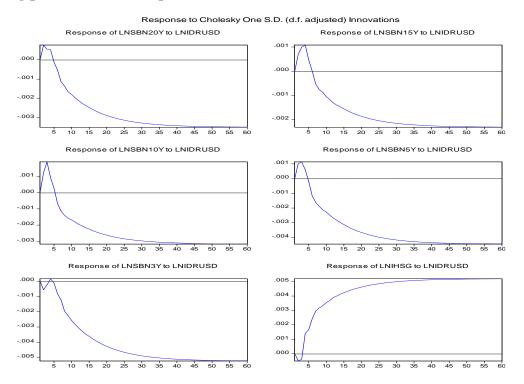
ISSN 2582-0176

b. During pandemic-covid19 period



4.1.3 Impulse Response Functions (IRF) SBN-Domestic (SBN20Y, SBN15YSBN10Y, SBN5Y, and SBN3Y) and IHSG to the shocks from/IDR in the pre- pandemic-covid19 and during the pandemic-covid19 period

a. In the pre- pandemic-covid19


Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Response to Cholesky One S.D. (d.f. adjusted) Innovations

b. During pandemic-covid19 period

Impulse response function analysis showed that: In the long run when the shock came from the T-Bond10Y yield at the pre-pandemic-covid19 period, the biggest response is given by the SBN10Y yield (0.057%), while the yields of SBN20Y (0.037%), SBN15Y (0.05%), SBN5Y (0.04%), SBN3Y (0.03%) and IHSG (0.01%). Whereas in the long run during the

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

pandemic-covid19 period, the response tended to increase significantly, the largest response values were given by yields of SBN3Y (0.50%) and SBN5Y (0.40%), meanwhile, SBN20Y, SBN15Y, and SBN10Y gave the same response in around 0.3%, and the IHSG response was -0.33%. In the long run, when a shock comes from SP500, the biggest response is given by the yield on SBN3Y (-0.27%) while the yield on SBN20Y (-0.14%), SBN15Y (-0.17%), SBN10Y (-0.13%), SBN5Y (-0.15%) and IHSG (0.21%). Meanwhile, in the long run during the pandemic-covid19 period, the response tended to increase significantly, the largest response value was given by the yields of SBN3Y (-1.04%) and SBN5Y (-1.03%), meanwhile, SBN20Y (-0.70 %), SBN15Y (-0.60%) and SBN10Y (-0.80%) while JCI (0.92%).In the long run, when the shock came from IDR/USD, the biggest response is given by the yields of SBN20Y (0.24%) and SBN15Y (0.24%), while yields of SBN10Y (0.22%), SBN5Y (0.21%), SBN3Y (0.16%), and IHSG (-0.09%). Meanwhile, in the long run during the pandemic-covid19 period, the response tended to increase significantly, the largest response value was given by the yields of SBN3Y (-0.52%) and SBN5Y (-0.44%), meanwhile, SBN20Y (-0.35 %), SBN15Y (-0.32%) and SBN10Y (-0.32%) while IHSG (0.05%).

4.2 Variance Decomposition (VD) yield SBN Domestik (SBN20Y, SBN15, SBN10Y, SBN5Y DAN SBN3Y), IHSG, yield T-Bond10Y, SP500, dan USD/IDRin the prepandemic-covid19andduring pandemic-covid19period

Table 13: variance decomposition SBN20Y results in the pre- pandemic-covid19 period

Period	S.E.	LNSBN20 Y			LNSBN5Y	LNSBN3Y	LNIHSG	LNTBON D10Y		LNIDRUS D
1	0.005802	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.010119	88.56279	1.478755	2.877197	0.296538	0.119503	1.201556	0.016243	1.101258	4.346164
3	0.013331	81.82378	3.143682	4.104631	0.244639	0.101280	2.147004	0.075220	2.180341	6.179424
4	0.015862	78.93739	3.749239	4.549484	0.191578	0.075705	2.935883	0.123489	2.594061	6.843172
5	0.017973	77.47181	3.933687	4.761386	0.159392	0.062286	3.444658	0.137786	2.801294	7.227704
10	0.025676	75.42839	4.141765	4.843015	0.106144	0.060246	4.212678	0.153735	3.112311	7.941715
20	0.036249	75.12003	4.082722	4.487053	0.104536	0.114357	4.453098	0.173501	3.141911	8.322788
30	0.044299	75.18289	4.019329	4.258318	0.112595	0.155148	4.501172	0.184854	3.118977	8.466718
40	0.051081	75.24559	3.978979	4.122496	0.118455	0.180648	4.519051	0.191505	3.101080	8.542196
50	0.057058	75.28974	3.952913	4.036378	0.122367	0.197077	4.528522	0.195708	3.088980	8.588312
60	0.062466	75.32063	3.935107	3.977876	0.125065	0.208292	4.534573	0.198560	3.080607	8.619285

Cholesky Ordering: LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Table 14: variance decomposition SBN20Y results during pandemic-covid19 period

Period	S.E.	LNSBN20 Y	LNSBN15 Y	LNSBN10 Y	LNSBN5 Y	LNSBN3 Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.004531	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.007199	88.38794	2.051104	7.266403	0.109596	0.000917	0.588422	0.267570	0.220755	1.107296
3	0.009443	79.89909	3.600223	11.29089	0.765786	0.340203	0.834129	0.805154	1.485645	0.978879
4	0.011573	72.45420	3.179359	15.16505	0.669025	0.416940	1.678148	1.830044	3.753280	0.853955
5	0.013559	66.74659	2.704749	16.58817	0.526644	1.022827	2.374662	2.570866	6.834388	0.631111
10	0.022732	47.00054	2.627803	21.34123	0.200501	4.596168	2.218167	4.115044	15.85742	2.043124
20	0.039455	29.23940	2.746019	24.05628	0.069393	8.243925	1.366964	5.199294	24.38733	4.691390
30	0.053709	22.68044	2.771924	24.58981	0.043147	9.753685	1.033607	5.562312	27.63546	5.929617
40	0.065796	19.60575	2.779448	24.75210	0.034115	10.49257	0.876120	5.724904	29.17404	6.560956
50	0.076267	17.90738	2.782389	24.82106	0.029853	10.90807	0.788954	5.812873	30.02764	6.921780
60	0.085556	16.85689	2.783872	24.85818	0.027407	11.16704	0.735002	5.866785	30.55662	7.148203

Cholesky Ordering: LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 15: variance decompositio	n SBN15Y results in the p	pre- pandemic-covid 19 period
---------------------------------	---------------------------	-------------------------------

Period	S.E.	LNSBN2 0Y	LNSBN1 5Y	LNSBN1 0Y	LNSBN5 Y		LNIHSG	LNTBON D10Y		LNIDRU SD
1	0.005802	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.010119	0.692055	91.93000	2.219119	0.120222	0.487322	0.852775	0.010777	1.263760	2.423975
3	0.013331	0.569824	88.30170	2.869641	0.100755	0.403081	1.589265	0.102865	2.150927	3.911940
4	0.015862	0.449271	86.49482	3.217476	0.079951	0.320133	2.234051	0.173698	2.481200	4.549400
5	0.017973	0.393382	85.49973	3.406049	0.064092	0.279443	2.647569	0.193872	2.662035	4.853825
10	0.025676	0.298802	84.05056	3.541674	0.036012	0.237024	3.278962	0.221273	2.948836	5.386856
20	0.036249	0.274923	83.65054	3.377301	0.030048	0.274902	3.494584	0.243010	3.006806	5.647884
30	0.044299	0.273237	83.57936	3.260565	0.030779	0.307003	3.547204	0.253904	3.005917	5.742028
40	0.051081	0.273615	83.55498	3.190377	0.031720	0.327075	3.569936	0.260073	3.001620	5.790604
50	0.057058	0.274095	83.54262	3.145818	0.032406	0.339967	3.582845	0.263926	2.998246	5.820074
60	0.062466	0.274469	83.53487	3.115582	0.032890	0.348747	3.591295	0.266528	2.995826	5.839795

Cholesky Ordering: LNSBN15Y LNSBN20Y LNSBN10Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 16: variance decomposition SBN15Y results during pandemic-covid19 period

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

Period	S.E.	LNSBN20 Y	LNSBN15 Y		LNSBN5Y	LNSBN3Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.004531	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.007199	0.049925	93.49490	4.238639	0.075262	0.001330	0.826086	0.215692	0.463653	0.634515
3	0.009443	0.373678	84.66987	7.298223	0.194950	0.005529	2.856497	0.931227	2.524632	1.145388
4	0.011573	0.361152	74.36086	9.076462	0.657823	0.007541	5.001567	4.055383	5.022026	1.457188
5	0.013559	0.281248	67.00743	9.554787	0.529587	0.157086	6.892486	5.374041	9.006797	1.196539
10	0.022732	0.181711	54.17746	11.91610	0.222306	2.123242	7.190475	6.659698	16.59718	0.931830
20	0.039455	0.264072	42.33113	14.46904	0.084099	4.375600	5.675735	7.400051	23.47811	1.922157
30	0.053709	0.333523	37.28139	15.45063	0.048146	5.488332	4.874391	7.625110	26.29628	2.602202
40	0.065796	0.374725	34.70988	15.92306	0.033327	6.085665	4.448123	7.721740	27.70572	2.997769
50	0.076267	0.399930	33.22133	16.18974	0.025535	6.438646	4.197807	7.773367	28.51522	3.238418
60	0.085556	0.416331	32.27409	16.35760	0.020784	6.665198	4.037626	7.805056	29.02862	3.394694

Cholesky Ordering: LNSBN15Y LNSBN20Y LNSBN10Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Period	S.E.	LNSBN20 Y	LNSBN15 Y	LNSBN10 Y	LNSBN5 Y	LNSBN3 Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.005802	0.000000	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.010119	0.003027	0.010266	94.21458	0.302981	0.370258	0.806741	0.008500	1.582867	2.700780
3	0.013331	0.126748	0.119838	90.62011	0.257389	0.298078	1.663119	0.066950	2.897275	3.950489
4	0.015862	0.156472	0.185374	89.04464	0.224058	0.289860	2.265798	0.106497	3.246640	4.480664
5	0.017973	0.150147	0.189725	88.24340	0.207243	0.326975	2.620670	0.117914	3.384681	4.759244
10	0.025676	0.096309	0.229626	86.63674	0.280832	0.852859	2.955803	0.158090	3.420207	5.369536
20	0.036249	0.254147	0.304865	84.74547	0.561461	2.112718	2.826016	0.242642	3.094511	5.858166
40	0.051081	0.584909	0.380319	82.73146	0.894011	3.541212	2.594841	0.332792	2.730281	6.210178
50	0.057058	0.677991	0.399046	82.21783	0.979556	3.906432	2.533788	0.355475	2.638989	6.290894
60	0.062466	0.743306	0.412028	81.86069	1.039075	4.160396	2.491230	0.371222	2.575651	6.346405

Cholesky Ordering: LNSBN10Y LNSBN20Y LNSBN15Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 18: variance decomposition SBN10Y results during pandemic-covid19 period

Period	S.E.	LNSBN20 Y	LNSBN15 Y	LNSBN1(Y) LNSBN5Y	LNSBN3Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.004531	0.000000	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
www.ijssmr.org Copyright © IJSSMR 2023, All right reserved										Page 161

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

2	0.007199	0.007697	0.005850	95.36688	0.004259	0.006074	1.366720	0.098090	1.972516	1.171916
3	0.009443	0.293863	0.006709	88.80694	0.533512	0.004650	1.999880	1.237825	4.894245	2.222377
4	0.011573	0.240888	0.399418	83.50929	0.413568	0.076533	2.981084	1.535776	9.067474	1.775967
5	0.013559	0.232773	0.651707	80.37915	0.316063	0.326952	3.499167	1.902780	11.32325	1.368158
10	0.022732	0.679492	0.716911	72.64930	0.151549	1.824557	3.023747	2.178899	17.40616	1.369385
20	0.039455	1.431589	0.710496	64.18777	0.095263	3.604970	2.037884	2.729762	22.88716	2.315101
30	0.053709	1.808683	0.691531	60.09258	0.085279	4.528980	1.649606	3.006976	25.19269	2.943677
40	0.065796	2.012363	0.678817	57.90941	0.082200	5.033632	1.456882	3.154991	26.36403	3.307677
50	0.076267	2.133323	0.670753	56.61982	0.080859	5.334557	1.346314	3.242383	27.04272	3.529272
60	0.085556	2.211240	0.665427	55.79102	0.080120	5.528713	1.276126	3.298529	27.47539	3.673434

Cholesky Ordering: LNSBN10Y LNSBN20Y LNSBN15Y LNSBN5Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 19: variance decomposition SBN5Y results in the pre-pandemic-covid19 period

		LNSBN20	LNSBN15	LNSBN10)			LNTBON		LNIDRUS
Period	S.E.	Y	Y	Y	LNSBN5Y	LNSBN3Y	LNIHSG	D10Y	LNSP500	D
1	0.005802	0.000000	0.000000	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.010119	0.355038	0.137544	0.774825	94.57220	0.082646	1.428004	0.066829	1.363853	1.219062
3	0.013331	0.459077	0.513762	0.910141	91.38975	0.135000	2.021767	0.069503	2.044446	2.456554
4	0.015862	0.463932	0.686005	0.978816	89.86311	0.134900	2.572720	0.085607	2.206345	3.008563
5	0.017973	0.476114	0.738220	1.000138	89.09704	0.140846	2.914502	0.089870	2.285914	3.257356
10	0.025676	0.491043	0.773383	0.852285	88.07082	0.238820	3.385881	0.098143	2.362794	3.726828
20	0.036249	0.519592	0.709090	0.578650	87.94751	0.448948	3.460127	0.116650	2.258462	3.960975
30	0.044299	0.536371	0.665498	0.443829	87.97555	0.580902	3.442097	0.128126	2.183377	4.044245
40	0.051081	0.546223	0.639402	0.369171	88.00023	0.660440	3.424701	0.134968	2.137853	4.087016
50	0.057058	0.552455	0.622816	0.322837	88.01713	0.711173	3.412491	0.139316	2.108809	4.112976
60	0.062466	0.556687	0.611538	0.291563	88.02886	0.745710	3.403952	0.142272	2.089037	4.130378

Cholesky Ordering: LNSBN5Y LNSBN20Y LNSBN15Y LNSBN10Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 20: variance decomposition SBN5Y results during pandemic-covid19 period

		LNSBN20	LNSBN15					LNTBON		LNIDRUS
Period	S.E.	Y	Y	Y	LNSBN5Y	LNSBN3Y	LNIHSG	D10Y	LNSP500	D
1	0.004531	0.000000	0.000000	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000
2	0.007199	0.480213	0.241453	2.939555	94.11816	0.015741	0.313209	0.458628	0.751043	0.681996
3	0.009443	1.031537	0.191483	6.987314	83.98243	0.074569	1.020633	1.573554	4.180718	0.957768
www.ij	ssmr.org		Сор	yright ©	IJSSMR 202	3, All righ	t reserve	d		Page 162

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

4	0.011573	1.280608	0.855820	6.774771	77.35003	0.051302	1.501510	2.382765	9.040833	0.762354
5	0.013559	1.490500	1.178322	6.419908	73.68836	0.258737	1.491342	3.050230	11.83884	0.583760
10	0.022732	2.321884	0.957443	6.877997	62.94964	1.762956	0.797893	3.356319	19.37135	1.604514
20	0.039455	3.023388	0.610103	7.980438	50.69582	3.964630	0.340008	4.033297	25.99348	3.358839
30	0.053709	3.256518	0.461547	8.441365	45.38784	5.080318	0.211701	4.324918	28.54266	4.293135
40	0.065796	3.362345	0.388967	8.665721	42.72482	5.669917	0.156644	4.468596	29.76963	4.793358
50	0.076267	3.420277	0.348116	8.791965	41.20473	6.013413	0.127228	4.549910	30.45825	5.086119
60	0.085556	3.456083	0.322575	8.870902	40.24822	6.231399	0.109240	4.600882	30.88845	5.272249

Cholesky Ordering: LNSBN5Y LNSBN20Y LNSBN15Y LNSBN10Y LNSBN3Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

$1 a \beta \alpha 21$, $\gamma \alpha 1 \alpha \alpha \alpha \beta \alpha \beta \beta \beta \alpha \beta \alpha \beta \beta \alpha \beta \beta \alpha \beta \alpha$	Table 21: variance decom	position SBN3Y	results in the pre-	pandemic-covid19 period
--	--------------------------	----------------	---------------------	-------------------------

Period	S.E.	LNSBN20 Y	LNSBN15 Y			LNSBN3Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.005802	0.000000	0.000000	0.00000	0.00000	100.0000	0.000000	0.00000	0 000000	0.000000
2	0.000002	0.000000				95.90415				
3	0.013331	3.846368	1.265903	1.391863	2.572661	89.12697	0.388652	0.160917	0.854501	0.392164
4	0.015862	5.329133	2.232030	2.565014	2.844173	83.92604	0.787948	0.217258	1.322691	0.775716
5	0.017973	6.408918	2.983075	3.663407	2.869382	79.93540	1.141709	0.262380	1.675519	1.060209
10	0.025676	8.995585	5.521996	8.580858	2.503683	67.22850	2.356151	0.261978	2.939174	1.612075
20	0.036249	10.80204	7.997755	14.58242	1.913687	55.09324	3.428865	0.183919	4.154777	1.843295
30	0.044299	11.50414	9.132206	17.57560	1.626627	49.50697	3.902084	0.143893	4.705070	1.903412
40	0.051081	11.85885	9.735754	19.20569	1.472776	46.52712	4.151391	0.122496	4.996798	1.929124
50	0.057058	12.06807	10.09775	20.19049	1.380346	44.73825	4.300470	0.109665	5.171572	1.943393
60	0.062466	12.20485	10.33567	20.83922	1.319568	43.56217	4.398359	0.101233	5.286402	1.952534

Cholesky Ordering: LNSBN3Y LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 22: variance decomposition	SBN3Y results during	pandemic-covid19 period
Tuble 221 variance accomposition	DDI TO I TODARD GUIING	pundenne covidis period

Period	S.E.	LNSBN20 Y	LNSBN15 Y		LNSBN5Y	LNSBN3Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.004531	0.000000	0.000000	0.000000	0.000000	100.0000	0.000000	0.000000	0.000000	0.000000
2	0.007199	1.064599	1.577117	1.902842	2.135743	93.13265	0.003805	0.060277	0.002802	0.120169
3	0.009443	1.936377	2.985640	7.014587	2.597915	85.10199	0.004762	0.264429	0.001861	0.092444
4	0.011573	2.447041	4.400008	9.596258	2.214517	78.58365	0.556550	0.877159	1.251345	0.073476
5	0.013559	2.841394	4.280678	12.32299	2.084381	73.56770	0.616989	1.756724	2.468426	0.060723
www.iis	ssmr.org		Cor	ovright ©	IJSSMR 202	23. All right	treserve	d		Page 163

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

10	0.022732	3.137762	4.391939	21.16004	2.713485	52.22673	0.753366	3.789160	10.60387	1.223648
20	0.039455	2.013566	4.755416	28.41786	2.869616	29.49033	0.942443	5.727303	21.61621	4.167256
30	0.053709	1.439280	4.864560	30.69084	2.783585	20.08514	0.964862	6.514897	26.83394	5.822902
40	0.065796	1.147069	4.901144	31.63010	2.712020	15.53943	0.964350	6.889682	29.49259	6.723625
50	0.076267	0.979963	4.917083	32.11655	2.664373	12.98893	0.961269	7.098325	31.01880	7.254711
60	0.085556	0.874503	4.925752	32.40988	2.632468	11.39190	0.958573	7.228499	31.98402	7.594412

Cholesky Ordering: LNSBN3Y LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNIHSG LNTBOND10Y LNSP500 LNIDRUSD

Table 23: variance decomposition IHSG results in the pre-pandemic-covid19 period

Period	S.E.	LNSBN20 Y	LNSBN15 Y			LNSBN3Y	LNIHSG	LNTBON D10Y	LNSP500	LNIDRUS D
1	0.005802	0.000000	0.000000	0.00000	0.00000	0.000000	100.0000	0.00000	0.00000	0.000000
2						0.010339				
3	0.013331	0.125379	0.798211	0.231523	0.052613	0.023799	94.61049	0.566712	3.003046	0.588232
4	0.015862	0.240386	0.822290	0.266718	0.089113	0.052871	94.10029	0.661689	3.082758	0.683880
5	0.017973	0.312354	0.815973	0.326684	0.125706	0.099616	93.70311	0.758487	3.159404	0.698669
10	0.025676	0.432858	0.971601	0.725949	0.270380	0.356116	91.99394	0.994707	3.516675	0.737777
20	0.036249	0.465409	1.190379	1.379393	0.449787	0.781829	89.96728	1.133231	3.881677	0.751017
30	0.044299	0.468902	1.303446	1.744880	0.542721	1.023697	88.92746	1.183574	4.052556	0.752765
40	0.051081	0.469295	1.366225	1.952596	0.594551	1.161794	88.34846	1.208942	4.145025	0.753109
50	0.057058	0.469262	1.404637	2.080613	0.626314	1.247025	87.99378	1.224002	4.201161	0.753207
60	0.062466	0.469184	1.430160	2.165865	0.647430	1.303810	87.75802	1.233914	4.238368	0.753249

Cholesky Ordering: LNIHSG LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNSBN3Y LNTBOND10Y LNSP500 LNIDRUSD

Table 24: variance decomposition IHSG results during the pandemic-covid19 period

D I		LNSBN20	BIODITIE	BIODITO				LNTBON		LNIDRU
Period	S.E.	Y	Y	Ŷ	LNSBN5Y	LINSBIN3 Y	LNIHSG	DIOY	LNSP500	D
1	0.004531	0.000000	0.000000	0.000000	0.000000	0.000000	100.0000	0.000000	0.000000	0.00000
2	0.007199	0.787753	1.826958	0.057133	0.150061	0.118022	93.40216	0.051742	3.529024	0.07714
3	0.009443	2.014848	3.356685	0.065302	0.206571	0.581869	88.42217	0.322814	4.944402	0.08534
4	0.011573	1.685839	2.480041	0.116477	0.267148	1.381430	86.87278	0.441996	6.399859	0.35443
5	0.013559	1.764999	2.177246	0.109479	0.347004	1.851137	84.96864	0.778098	7.432238	0.5711
10	0.022732	1.726898	2.426427	0.110458	0.360795	4.300562	75.82357	1.326366	11.45139	2.4735
20	0.039455	1.770276	2.678110	0.486618	0.289382	6.597818	65.53942	1.972875	16.18069	4.4848

www.ijssmr.org

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

30	0.053709	1.790807	2.777585	0.816756	0.244778	7.702148	60.37444	2.295610	18.54227	5.455616
40	0.065796	1.800489	2.827521	1.030209	0.219385	8.309379	57.50049	2.474959	19.84788	5.989686
50	0.076267	1.805905	2.856580	1.167632	0.203853	8.677429	55.75026	2.584103	20.64064	6.313593
60	0.085556	1.809326	2.875294	1.259943	0.193639	8.918696	54.60066	2.655768	21.16068	6.525992

Cholesky Ordering: LNIHSG LNSBN20Y LNSBN15Y LNSBN10Y LNSBN5Y LNSBN3Y LNTBOND10Y LNSP500 LNIDRUSD

From the results of the variance decomposition test, it can be concluded that in the long run contribution of the variance of other variables, which has the greatest effect on changes in the variance of SBN-Domestic and IHSG, comes from the SP500 variance, and the other contribution comes from the variance of T-Bond10Y and the IDR/USD. This can be seen in the contribution value of the SP500 variance to variables such as in the pandemic-covid19 period, in the long-run equilibrium the contribution value of the SP500 variance is as follows 5.286% (SBN3Y), 2.995% (SBN15Y), 2.575% (SBN10Y), 2.085% (SBN5Y), and 4.238% (IHSG), meanwhile during pandemic-covid19 period the SP500 variance contribution value increased to 31.984% (SBN3Y), 30.888% (SBN5Y), 30.556% (SBN20Y), 29.028% (SBN15Y), 27.475% (SBN10Y), and 21.160 (IHSG). This proves that there is a change in dynamic linkages and SP500 has the strong ability to predict the changes in SBN-Domestic and IHSG during the pandemic-covid19 period. Another variance contribution comes from the IDR/USD variance. This can be seen in the contribution value of the IDR/USD variance to variables such as in the pre-pandemic-civid19 period, in the long-run equilibrium the contribution value of the IDR/USD variance is as follows 8.619% (SBN20Y), 5.839% (SBN15Y), 6.346% (SBN10Y), 4.130% (SBN5Y), while 1.952% (SBN3Y) and 0.753% (IHSG), meanwhile during the period during the pandemic-covid19 the contribution value of the IDR/USD variance was as follows 7.594% (SBN3Y), 5.272% (SBN5Y), 7.148% (SBN20Y), 3.673% (SBN10Y), 3.394% (SBN15Y), and 6.525 (IHSG) and the last contribution of variance is derived from the T-Bond10Y variance, the contribution of theT-Bond10Y to variables as in the pre-pandemic-covid19 in the long-run equilibrium was as follows 0.371% (SBN10Y), 0.266% (SBN15Y), and 0.198% (SBN20Y), during the pandemic-covid19, in the long-runthe contribution value of the T-Bond10Y variance is as follows 7.228% (SBN3Y), 4.600% (SBN5Y), 7.805% (SBN15Y), 5.886% (SBN20Y), and 3.298% (SBN10Y). The large contribution of the variance of other variables to certain variables indicates that these variables are not independent and significant to the shock transmitted from other variables (T-Bond10Y, SP500, and IDR/USD). In concluded said that yields on SBN-Domestic and IHSG are sensitive to changes (shock) of SP500, IDR/USD, and T-Bond10Y.

4.3 Granger Causality Test Result Pre -Pandemic-covid19and During Pandemic-covid19

Table 25: Granger Causality Test Result Pre - Pandemic-covid19

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

LNTBOND10Y does not Granger Cause LNSBN20Y	1.84463	0.1591
LNSBN20Y does not Granger Cause LNTBOND10Y	0.15589	0.8557
LNSP500 does not Granger Cause LNSBN20Y	13.9915	1.E-06
LNSBN20Y does not Granger Cause LNSP500	0.25988	0.7712
LNIDRUSD does not Granger Cause LNSBN20Y	62.3203	5.E-25
LNSBN20Y does not Granger Cause LNIDRUSD	0.56086	0.5711
LNTBOND10Y does not Granger Cause LNSBN15Y	1.13499	0.3222
LNSBN15Y does not Granger Cause LNTBOND10Y	0.30934	0.7341
LNSP500 does not Granger Cause LNSBN15Y	12.1125	7.E-06
LNSBN15Y does not Granger Cause LNSP500	0.09917	0.9056
LNIDRUSD does not Granger Cause LNSBN15Y	42.2405	9.E-18
LNSBN15Y does not Granger Cause LNIDRUSD	0.10643	0.8991
LNTBOND10Y does not Granger Cause LNSBN10Y	2.35596	0.0958
LNSBN10Y does not Granger Cause LNTBOND10Y	0.66244	0.5160
LNSP500 does not Granger Cause LNSBN10Y	13.8673	1.E-06
LNSBN10Y does not Granger Cause LNSP500	0.10016	0.9047
LNIDRUSD does not Granger Cause LNSBN10Y LNSBN10Y does not Granger Cause LNIDRUSD	31.8473 0.13781	9.E-14 0.8713
LNTBOND10Y does not Granger Cause LNIHSG	3.82513	0.022 4
LNIHSG does not Granger Cause LNTBOND10Y	1.02284	0.3603
LNSP500 does not Granger Cause LNIHSG	22.7952	3.E-1
LNIHSG does not Granger Cause LNSP500	0.64580	0.524
LNIDRUSD does not Granger Cause LNIHSG	3.58784	0.0283
LNIHSG does not Granger Cause LNIDRUSD	2.23976	0.1075

Table 26: Granger Causality Test ResultDuring Pandemic-covid19

LNTBOND10Y does not Granger Cause LNSBN20Y LNSBN20Y does not Granger Cause LNTBOND10Y	2.33549 6.17037	0.0732 0.0004
LNSP500 does not Granger Cause LNSBN20Y LNSBN20Y does not Granger Cause LNSP500	13.4459 2.21620	2.E-08 0.0856
LNIDRUSD does not Granger Cause LNSBN20Y LNSBN20Y does not Granger Cause LNIDRUSD	35.9954 2.01731	9.E-21 0.1108

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

LNTBOND10Y does not Granger Cause LNSBN10Y	8.94354	9.E-06	
LNSBN10Y does not Granger Cause LNTBOND10Y	2.57864	0.0532	
LNSP500 does not Granger Cause LNSBN10Y	16.1423	6.E-10	
LNSBN10Y does not Granger Cause LNSP500	2.16873	0.0910	
LNIDRUSD does not Granger Cause LNSBN10Y	6.34420	0.0003	
LNSBN10Y does not Granger Cause LNIDRUSD	1.58616	0.1920	
LNTBOND10Y does not Granger Cause LNSBN10Y	8.94354	9.E-06	
LNSBN10Y does not Granger Cause LNTBOND10Y	2.57864	0.0532	
LNSP500 does not Granger Cause LNSBN10Y LNSBN10Y does not Granger Cause LNSP500	16.1423 2.16873	6.E-10 0.0910	
LNIDRUSD does not Granger Cause LNSBN10Y	6.34420	0.0003	
LNSBN10Y does not Granger Cause LNIDRUSD	1.58616	0.1920	
LNTBOND10Y does not Granger Cause LNIHSG LNIHSG does not Granger Cause LNTBOND10Y		3.52374 7.77602	
LNSP500 does not Granger Cause LNIHSG LNIHSG does not Granger Cause LNSP500		5.5349 69734	
LNIDRUSD does not Granger Cause LNIHSG LNIHSG does not Granger Cause LNIDRUSD		25785 10978	

The Granger causality test shows that in the pre- pandemic-covid19 period, the T-Bond10Y yield had causality with SBN10Y, SBN5Y, SBN3Y, and IHSG while during the pandemic-covid19 period the yield T-Bond10 had causality with all SBN-Domestic and IHSG. During pandemic-covid19, SP500 has causality with all variables SBN-Domestic and IHSG, while in the pre-pandemic-covid19 had causality with SBN5Y, SBN3Y, and IHSG. IDR/USD had causality with all variables of SBN and IHSG in the pre-pandemic-covid19 period, while during the pandemic-covid19 period, the causality significantly occurred in the SBN-Domestic variable while IHSG is not significant.

5.0 CONCLUSIONS AND IMPLICATIONS

There was a significant change in the dynamic linkages between the yield of SBN-Domestic and the IHSG to the shock that occurred in the T-Bond10Y, SP500, and IDR/USD in the period pre pandemic-covid19 and during pandemic-covid19. It was proved by increasing values response and variance decomposition contribution from exogenous variables (T-Bond10Y, SP500, and IDR/USD) to endogenous variables in the model (SBN-Domestic and IHSG), and coefficient correlation has supported the findings. The conclusions have implications for investors and the government as policymakers. The results of research on changes in dynamic linkages on the variables tested against shocks in the VECM model provide useful information, especially for the risk assessment of financial assets (stocks and bonds) that will be included in portfolio investment. By knowing the integrated response of

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

domestic SBN-Domestic in various tenors and IHSG to shocks from the US, investors can mitigate risks that occur in investment portfolios, while for the Indonesian government, this information is important to find out the extent of the interdependence of domestic SBN-Domestic yields in various tenors and IHSG to external (US) shocks in the period before and during pandemic-covid19.

REFERENCES

- Abbas, G., Hammoudeh, S., Shahzad, S. J. H., Wang, S., & Wei, Y. (2019).Return and volatility connectedness between stock markets and macroeconomic factors in the G-7 countries. Journal of Systems Science and Systems Engineering, 28(1), 1- 36.
- Ang & Piazzesi. (2003). A no-Arbiterage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables. Journal of Monetary Economics, Vol 50 No. 4, pp. 745-787.
- Azeez, A. A., & Yonezawa, Y. (2006). Macroeconomic factors and the empirical content of the Arbitrage Pricing Theory in the Japanese stock market. Japan and the world economy, 18(4), 568-591.
- Baresa, S., Bogdan, S., & Ivanovic, Z. (2014). Interdependence of International Capital Markets. UTMS Journal of Economics, 25-39.
- Batten, J. A., Fetherston, T. A., & Hoontrakul, P. 2006. Factors affecting the yields of emerging market issuers: Evidence from the Asia-Pacific region. Journal of International Financial Markets Institutions, and Money, Vol. 16, No. 1 pp. 57-70.
- Belke, A., Dubova, I., & Volz, U. (2018). Bond yield spillovers from major advanced economies to emerging ASIA, Pacific Economic Review (xford, England), 23 (1), 109-126.
- Bianconi, M., Yoshino, J. A., Sousa, M.O. (2012). BRIC and the U.S. financial crisis: An empirical investigation of stock and bond markets. Emerging market review. 12, 76-109.
- Bredin, D., Hyde. S., Reilly, G.O. (2010). Monetary policy surprises and international bond markets. Journal of international money and finance. 29(6), 988-1002.
- Bhuiyan, R. A., Rahman, M. P., (2018). Financial Integration between sukuk and bond indices of emerging markets: insights from wavelet coherence and multivariate-GARCH analysis. Borsa Istanbul Review, 18 (3), 109-126.
- Bouri, E., Naim, M. A., & Nor, S. (2021). Government Response to COVID-19 and Industry Stock Returns. Economic Research-Ekonomska Istrajivanza, Vol. 35, No.1, pp. 1967-1990.

Volume: 06, Issue: 01 January - February 2023

- Chen, C., Liu, L., & Zhao, N. (2020). Fear Sentiment, Uncertainty, and Bitcoin Price Dynamics: The Case of COVID-19. Emerging Markets Finance and Trade. Vol. 56, pp. 2298-2309.
- Chi-Chuan Lee, Chien-Chiang Lee, and Yong-Yi Li (2019). Oil price shocks, geopolitical risk, and green bond markets dynamic. North American Journal of Economics and Finance, Vol.55 pp.1062-9408.
- Chandra, J. Y. (2015). Analisa kointegrasi pasar modal ASEAN-5 sebelum, saat, dan setelah krisis subprime mortgage. Finesta, 3(1), 24-29.
- Click, R. W., & Plummer, M. G. (2005). Stock market integration in ASEAN after the Asian financial crisis. Journal of Asian Economics, 16(1), 5-28
- Diebold, F.X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International journal of forecasting, 28 (1), 57-66.
- Dhingra & Patel. (2021). An empirical Analysis of BRICS bond market integration. SCMS Journal of Indian management. 18(1). 22-36.
- Ersabathari, R. V., & Muharam, H. (2017). Integrasi Pasar Modal ASEAN 6 Periode Tahun 2007-2016.Diponegoro Journal of Management, 6(3), 449-463.
- Fama, E. F., & French, K. R. 1989. Business Conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25, 23–49.
- Ferucci, G. (2003). Empirical Determinants of Emerging Markets Economies Sovereign BondSpreads. Bank of England Working Paper. No. 205.
- Fitri, R., Hendryadi. (2020). Pengaruh nilai tukart dan indeks pasar saham global terhadap indeks harga saham sektoral. INOVASI. 16(1), 11-20.
- Fukuda, S., & Tanaka, M. (2020). Financial Spillover in Asian Emerging Economies. AsianDevelopment Review, 37 (1), 93-118.
- Gibson, H., Hall, G., Stephan, G., & Tavlas, S. (2012). The Greek Financial Crisis: Growing Imbalances and Sovereign Spreads. Bank of Greece Working Papers, Vol. 31, No. 3, pp. 498-516.
- Grandes, M. (2007). The Determinants of Sovereign Bond Spreads Theory and Facts from Latin America. Cuadernos de Economia. Vol. 44, No. 130, pp. 151-181.
- Guesmi, K. (2012). Characterizing South-East Asian stock market integration through time. International Journal of Business, 17(1), 99.

Volume: 06, Issue: 01 January - February 2023

ISSN 2582-0176

- Hamori, S., & Xu, H. (2012). Dynamic Linkages od Stock Prices Between the BRICs and the United States: Effects of the 2008-09 Financial Crisis. Journal of Asian Economics. 23 (4): 344-352.
- Hsing Yu. (2015). Determinants of the government bond yield in Spain: a loanable funds model.International Journal of Financial Studies, Vol. 3, No. 3, pp. 342-350.
- Hyde, S., Bredin, D. & Nguyen, N. (2010). Correlation Dynamics Between Asia-Pacific, EuandUSStock Returns. MPRA Paper No. 9681, University Library of Munich, Germany.
- Ibrahim, M. (2003). Macroeconomic forces and capital market integration A VAR analysis for Malaysia. Journal of the Asia Pacific Economy, 8(1), 19-40.
- Jaramilo, L, and Weber, A. (2012), "Bonds Yields in Emerging Economies: it matters What State You Are In" IMF Working Paper, Vol 12 No. 198.
- Kang, S.H., Troster, V., Yoon, S.M. (2019). Directional spillover effects between ASEAN and world stock markets. Journal of multinational financial management. 52-53.
- Koskita, E., & Nikiforos, T. L. (2019). Dynamic Linkages among cryptocurrencies, exchange rates, and global equity markets. Department of Finance, Merrick School of Business, University of Baltimore, Baltimore, Maryland, USA, Vol. 37 No. 2, pp. 243-265.
- Laopodis, N. (2010). Dynamic Linkages among Major Bond Yields. The Journal of Fixed Income, 20 (1), 74-87.
- Laopodis, N. (2012). Dynamic Linkages among Budget Deficits, Interest Rates, and Stock Market. Institute for Fiscal Studies. Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK, and 350 Main Street, Malden, MA 02148, USA, vol, 33 No. 4, pp. 547-570.
- Lee, C., Lee, C., H., & Li, Y. (2021). Oil price shocks, geo-political risk, and green bond market dynamics. The North American Journal of Economics and Finance, Vol. 55.
- Lestari, E. (2012). Is Indonesia More Financially Linked To The World Since The Asian Financial Crisis? RIEBS, 3(2), 1-14.
- Lie, K., & Giles, T. (2013). The timing of literature review in grounded theory research. ANS advances in nursing science, 36 (2) pp. 29-40.

Madura. (2006). International Corporate Finanace. Salemba Empat, 2006.

Volume: 06, Issue: 01 January - February 2023

- Min, H. G. 1998. Determinants of emerging market bond spread: Do economic fundamentals matter World Bank Policy Research Working Paper No. 1899. Washington DC: The World Bank.
- Miyajima, K., Mohanty, M. S., & Chan, T. (2015). Emerging Market Local Currency Bonds: Diversification and Stability. Emerging Markets Review, Vol. 22, pp. 126-139.
- Mohanasundaram, T. & Karthikeyan, P. (2015). Cointegration and Stock Markets Interdependence: Evidence from South Africa, India dan the USA. School of Management Studies, Kongu Engineering Collage. Vol 18 (2015) No. 4 pp. 475-485.
- Mukherjee, T. K., & Naka, A. (1995). Dynamic relations between macroeconomic variables and the Japanese stock market: an application of a vector error correction model. Journal of Financial Research, 18(2), 223-237.
- Muktiyanto, I., Aulia, M. (2019). Determinan Imbal Hasil (Yield) Surat Berharga Negara (SBN) Domestik. Kajian Ekonomi dan Keuangan Kementerian Keuangan .3(2).
- Mulyadi, M. S., & Anwar, Y. (2012). Analysis of volatility spillover in Indonesia, USA, and Japan capital markets. African Journal of Business Management, 6(27), 8227.
- Narayan, Pan, & Liu. (2021). Covid19 Locdowns, Stimulus Packages, Travel Bans, and Stock Returns. Finance Research Letters. Vol 38: 101732.
- Narayan, Devpura, & Wang. (2020). Japanese Currency and Stock Market-What Happened During the Covid-19 Pandemic. Economic Analysis and Policy. Vol. 68, pp. 191-198.
- Narayan, Gong, & Ahmed. (2021). Is There a Pattern in How COVID-19 has Affected Australia'sStock Market Return? Applied Economic Letters. Vol 29.
- Nautiyal, N. & Kavidayal. P.C. (2018). A VECM Approach to Explain Dynamic Alliance Stock Markets. Indian Journal of Finance, 12 (11): 49.
- Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, Vol. 59, No.2, pp. 347-370.
- Nezky, M. (2013). Pengaruh krisis ekonomi Amerika Serikat terhadap bursa saham dan perdagangan Indonesia. Buletin Ekonomi Moneter dan Perbankan, 15(3), 89-103.
- Panda, A.K. & Nanda, S. (2017). Market linkages and conditional correlation between the stock markets of South and Central America. Journal of Financial and Economic Policy, vol. 9 No. 2 pp. 174- 197.

Volume: 06, Issue: 01 January - February 2023

- Paramita & Pangestuti, (2016). Determinan Yield Obligasi Pemerintah Tenor 5 Tahun Dengan menggunakan Model EGARCH Pada Negara Indonesia, Malaysia, Thailand, dan Filipina. Diponegoro Journal of Finance, Vol. 5 No. 3 pp. 1-4.
- Pardomuan, S. dan Hary Saputra, S. (2019). "Pengaruh Faktor Makroekonomi dan Likuiditas Terhadap Yield Curve Obligasi Pemerintah", Media Ekonomi, Vol. 25 No. 2 pp. 117-132.
- Plummer, M.G., & Click R.W. (2005). Bond Market Development and Integration in ASEAN. International journal of Finance and Economics, 10(2), 133-142.
- Rigobon, R. (2019). Contagion, Spillover, and Interdependence. Economia (Washington, D.C.), 19 (2), 69-99.
- Sadhwani, R. (2020). Cointegration Analysis of Selected Currency Pairs Traded in the Indian Exchange Market. International Journal of Management (IJM). Vol. 11 pp. 476-485.
- Sandoval, G. & Paucar. (2020). Spillover Effecs of US Financial Markets in Colombian FianncialMarkets. Cuadernos de Economia. Vol. 39 No. 81 pp. 667-702.
- Santosa (2013), Integrasi Pasar Modal Kawasan China ASEAN, Jurnal Ekonomi Pembangunan Vol.14 No.1 Juni 2013 Hlm, 78-79.
- Shirodkar, M. S. (2017). Cointegration and Causal Relationship Among Crude Oil Prices, Exchange Rates, and Stock Market Performance: Am Evidence from India. Journal of Arts, Science and Commerce, Vol. 8, No. 3.
- Sihombing, P., & Sundoro, H., S. (2019). Pengaruh Faktor Makro Ekonomi dan LikuiditasTerhadap Yield Curve Obligasi Pemerintah Indonesia. Media Ekonomi, Vol. 25, No. 2, pp. 117- 132.
- Sum, V. (2013). The ASEAN Stock Markets Performance and Economic Policy Uncertainty in the United States. The Economic Society of Australia. Vol. 32 (4), pp. 512-521.
- Thupayagale, N. L. (2013). Dynamic linkages among major sovereign bond yields. The journal of fixed income, 20(1), 74-87.
- Van-Choung, D., Thi Lanh, LE., Quang Khai, N., & Due Quang, T. (2020). The linkage between Exchange Rate and Stock Prices: Evidence from Vietnam. Journal of Asian Finance, Economics and Business, Vol 7 No. 12, pp. 095-107.
- Wang, L. (2013). Who Moves East Asian Stock Markets? The Role of the 2007-2009 Global Financial Crisis. Journal of International Financial Markets, Institutions & Money, 28, 182-203.

Volume: 06, Issue: 01 January - February 2023

- Xu, H. & Hamori, S. (2012). Dynamic linkages of stock prices between the BRICs and the United States: Effects of the 2008-09 financial crisis. Journal of Asian Economics, 23 (2012) 344-352.
- Yiu, Tsang, & Nguyen. (2020). Spillover Across Sovereign Bond Market Between the US and ASEAN-4 Economies. Working Paper (WP/20-04).
- Zhang, D., Hu, M., & Ji, Q. (2020). Financial Markets Under the Global Pandemic of COVID-19. Finance Research Letters, 101528.